Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution

نویسندگان

  • Yu-Mei Han
  • X.-Grant Chen
چکیده

Aluminum based metal matrix composites (MMCs) have received considerable attention in the automotive, aerospace and nuclear industries. One of the main challenges using Al-based MMCs is the influence of the reinforcement particles on the corrosion resistance. In the present study, the corrosion behavior of Al-B₄C MMCs in a 3.5 wt.% NaCl solution were investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Results indicated that the corrosion resistance of the composites decreased when increasing the B₄C volume fraction. Al-B₄C composite was susceptible to pitting corrosion and two types of pits were observed on the composite surface. The corrosion mechanism of the composite in the NaCl solution was primarily controlled by oxygen diffusion in the solution. In addition, the galvanic couples that formed between Al matrix and B₄C particles could also be responsible for the lower corrosion resistance of the composites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Tri-modal 2024 Al -B4C composites with super-high strength and ductility: Effect of coarse-grained aluminum fraction on mechanical behavior

In this study, ultrafine grained 2024 Al alloy based B4C particles reinforced composite was produced by mechanical milling and hot extrusion. Mechanical milling was used to synthesize the nanostructured Al2024 in attrition mill under argon atmosphere up to 50h. A similar process was used to produce Al2024-5%wt. B4C composite powder. To produce trimodal composites, milled powders were combined w...

متن کامل

Multi-Response Optimization of Electrochemical Machining of Al-Si/B4C Composites Using RSM

The present work reports the electrochemical machining (ECM) of the aluminium-silicon alloy/boron carbide (Al-Si /B4C) composites, fabricated by stir casting process with different weight % of B4C particles. The influence of four machining parameters including applied voltage, electrode feed rate, electrolyte concentration and percentage of reinforcement on the responses surface roughness (SR) ...

متن کامل

Mechanical and Tribological Behavior of Aluminum Alloy LM13 Reinforced with Titanium Dioxide Metal Matrix Composites

In the present research work physical, mechanical and tribological behavior of Aluminum (Al) alloy LM13 reinforced with Nano-sized Titanium Dioxide (TiO2) particulates were fabricated, mechanical and tribological properties were investigated. The amount of nano TiO2 particulates in the composite was added from 0.5% to 2% in 0.5 weight percent (wt %) increments. The Al-LM13-TiO2 Metal Matrix Com...

متن کامل

Corrosion Polarization Behavior of Al-SiO2 Composites in 1M and Related Microstructural Analysis

The composites combining aluminum and silica nanoparticles with the addition of tetramethylammonium hydroxide (Al-SiO2(T)) and butanol (Al-SiO2(B)) as mixing media have been successfully fabricated. Corrosion behavior of Al-SiO2 composites before and after exposure in 1M NaCl solution was examined using potentiodynamic polarization (Tafel curve analysis). The st...

متن کامل

Machinability behavior of PCD 1600 Grade Inserts on Turning AL/SiC/B4C Hybrid Metal Matrix Composites

Aluminium metal matrix composites reinforced with SiC and B4C particles are a unique class of advanced engineered materials that have been developed to use in high strength , high wear resistant and tribological applications. The conventional techniques of producing these composites have some drawbacks. In this study, the aluminium hybrid composite is fabricated using stir casting method. 10 % ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015